Harbor Communities Monitoring Study

Board Overview January 25, 2007

Harbor Communities Monitoring Study (HCMS) Goals

Assess community exposure

- Find pollution "Hot Spots"
- Test low-cost easy-to-use monitors
- Determine impacts of local versus regional sources
- Establish baseline for control program effectiveness

Study Design

- Harbor Communities
 - Wide range of pollution sources
 - Residential neighborhoods impacted
- Complementary monitoring tools
 - Fixed "passive" monitors
 - Particle counters
 - Mobile monitoring platform
- Measure over entire year
 - PM2.5 health effects driven by annual average
 - Air toxic cancer risk based on long-term exposure
 - Meteorology varies by season

Passive Sampler Network: "Saturation Monitoring" (Professor Eric Fujita, Desert Research Institute)

Objective: Test whether affordable, non-pump driven "passive" samplers are sensitive and accurate enough for community level use

- Can they detect gradients?
- Can they accurately predict yearly averages from small sets of one- or two-week samples?

Initial Results from Laboratory and Field Evaluations of the Passive Samplers

- Reproducible precision:
 - NO₂ and NO_X
 - $-SO_2$
 - formaldehyde
 - acetaldehyde
- Still under evaluation:
 - benzene, toluene, ethylbenzene, xylene
 - 1,3-butadiene
 - hydrogen sulfide
 - acrolein

Particle Counter Network (Dr. Katharine Moore and Professor Constantinos Sioutas, USC)

Network of 13 particle counters

- Particle number dominated by "ultrafine" particles (<0.1µm)
- Ultrafine particles are a good indicator of combustion
- 3 months each in winter and summer seasons

Objective

 Determining local versus regional influences, weather and seasonal impacts, etc.

USC Equipment

Free-standing weather-proof shelter with tripod on top (for weather station)

Particle counter

Mobile Monitoring Platform

(Kathleen Kozawa, UCLA; Dr. Scott Fruin, ARB; Professor Arthur Winer, UCLA)

- Toyota RAV4 EV, zero-emission vehicle
- Measure gradients and find pollution "hot spots"
- Objective
 - Spatial and temporal resolution with realtime and near realtime instrumentation

Measurement Parameters

Particles

- PM2.5 mass
- black carbon
- number and size distribution
- particle-bound polycyclic aromatic hydrocarbons

Gases

- carbon monoxide (CO)
- carbon dioxide (CO₂)
- nitrogen oxides (NO_X)
- total and speciated volatile organic compounds (VOC)
- hydrogen sulfide (H₂S)
- Meteorology
- Traffic documentation and location

Basis for Route Selection

Sources

- Ports
- Freeways
- Refineries
- Rail yards
- Heavy-duty diesel truck traffic on surface streets

Route Development

- Source locations, prevailing winds
- Community input
- Low-income neighborhoods
- Traffic counts
- Dispersion modeling
- Electric vehicle range, road access

Residential Route: Identifying Pollution "Hot Spots"

Effect of Location on "Hot Spots" Sample Day 1

■ AM ■ PM

Effect of Location on "Hot Spots"

Sample Day 2

■AM ■PM

Effect of Road Type and Time of Day Single Sample Day

Summary of Preliminary Results

- Easy-to-use monitors good for some pollutants
- Ultrafine particle counters will help determine regional vs. local influences
- Mobile platform can identify pollution "hot spots"
- Variability in pilot results illustrates need for measurements throughout year

Important Dates

- Main Study Winter Sampling Start Date
 - February 2007
- Spring, Summer and Fall Monitoring
 - April-May, July-August, and October 2007
- Study Results Available in 2008